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Abstract

This paper contributes to the design of an infrastructure charging framework. Its aim is

to design rules for establishing and operating an infrastructure service, which supports an

allocative efficient solution that is normally budget neutral. An infrastructure service is

a service that can be decomposed in at least two service levels. The first-level services

represent the private use that is made of the second-level public service. The first-level

services are marketable, but cannot be used without the complementary service on the

second level. This infrastructure service concept has an analytical dimension, which allows

to derive efficiency and existence properties, and a governance dimension, which allows

for applying transaction cost theory in choosing an optimal policy. This governance is

characterized by Public-Private Partnership contracts, which are principal-agent relations

in which the public authority sets specific rules that firms in the private domain are able

and willing to accept in order to provide both the first and the second-level infrastructure

service. So the public authority establishes an optimal infrastructure service by providing

rules rather then productive resources.

Key words: infrastructure, public goods, public-private partnership, governance, efficiency,

general equilibrium.



1 Introduction

The governance of an infrastructure service features high on the agenda of both economists

and politicians. It is clear that satisfactory solutions have not been found yet. For exam-

ple, the state of California has recently issued a “stage-three” emergency for electricity

provision, meaning that 98.5% of its power reserves had been consumed and that a series

of hour-long power cuts might be imposed on different regions. The underlying problem is

that, although California’s demand for energy has risen rapidly in the past decade of boom,

it has built very little new generating capacity1. Another example is the vivid discussion

about the restructuring and privatisation of utilities, see [15], and about the boundary

between the public and private domain. The European Union has initiated a discussion

on how to protect services of general interest in a competitive market environment. More

specifically, the European Commission has published recently a White Paper [12] on a

common transport infrastructure charging framework.

This paper contributes to the design of an infrastructure charging framework. Its

aim is to design rules for establishing and operating an infrastructure service, which sup-

ports an allocative efficient solution that is normally budget-neutral. An infrastructure

service is a service that can be decomposed in at least two service-levels. The first-level

services represent the private use that is made of the second-level public service. The first-

level services are marketable, or can be made marketable, and belong to the private domain

ruled by competitive markets. These private services, however, cannot be used without the

complementary service on the second level. The second-level service is a nonmarketable

service and may belong to the public domain. It is a local public good or a network with

controlled access. This infrastructure service concept has an analytical dimension, which

allows to derive efficiency and existence properties, and a governance dimension, which

allows for applying transaction costs theory in choosing an optimal economic policy. This

governance dimension is characterized by Public-Private Partnership contracts, which are

principal-agent relations in which the public authority sets specific rules that firms in the

private domain are able and willing to accept in order to provide both the first and the sec-

ond level infrastructure service2. So the public authority provides in principle productive

rules rather than productive resources in order to obtain an optimal infrastructure service.

The problem of providing and financing infrastructure services has a long history.

The role of the public authority has changed during the last two centuries. We distinguish

1See The Economist December 23rd 2000.
2The Dutch Ministry of Finance describes PPP as ”a partnership in which the government and the

private sector together carry out a project on the basis of an agreed division of tasks and risks, each party

retaining its own identity and responsibilities.” This description implies detailed government involvement,

which may be practically indispensable for a learning by doing procedure at the start of such an enterprise.
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three degrees of government involvement. The first degree is characterized by a fully public

provision of the entire infrastructure service. This service may be organized as a vertically

integrated utility. The public authority determines the content of the service and executes

this task. In the second degree of involvement, the public authority sets the content of

the infrastructure service and defines separate tasks on the different service-levels and

lets private operators execute some of these tasks. In the third degree of government

involvement, the public authority only sets the governance of the infrastructure service,

which governance supports the underlying economic structure. This governance consists of

defining principal-agent relations between complementary level services in such a way that

the downstream agents, who render first-level services directly to the public, can perform

their tasks optimally. This implies that the stream of information and delegation between

levels goes up and down, in two directions. This solution concept is particularly relevant

if a supernational government is absent. But it presupposes a system of good performing

institutions on each service-level and a system of enforceable agency contracts. So the role

of the public authority shifts from determining the content of its service to determining

and controlling the governance of its service. This shift in role increases the efficiency

of the provision of an infrastructure service, as well as improves the position of equity

considerations. For the care of equity aspects can be inserted in the most appropriate level

of the governance.

The main economic issue to be solved in the case of first-degree government in-

volvement is public utility pricing. The French engineer Dupuit [7] proposed already in

1844 the marginal cost pricing rule for utilities in order to optimize the welfare effects of

an integrated public utility. This rule implied budget losses to be financed by lump-sum

taxation. That insight has not changed in 150 years, see Cornet [4]. The case of balanced

budgets was considered by Boiteux and Ramsey, leading to the Ramsey-Boiteux pricing

rule: the mark-up on marginal cost to meet the breakeven constraint should be inversely

proportional to the price elasticity for the different products sold by the utility. This rule

is budget neutral but not efficient. Brown, Heller and Starr [2] define a two-part tariff pric-

ing rule that recovers the losses incurred by pricing at marginal cost by a hookup charge

for access to any purchases of the monopoly good. The hookup charge is a fixed charge

that is imposed on any buyer wishing to purchase any positive amount of the increasing

returns good. It may be uniform across buyers or it may vary across buyers. The variable

charge consists of a constant per unit charge equal to the marginal cost of production.

They show the existence of such a two-part marginal cost pricing equilibrium, where only

households are required to pay an access charge. Such an equilibrium does not need to

be efficient. Moreover, some Pareto efficient allocations cannot be supported as two-part

tariff equilibria. See also Hammond and Vilar [14] and Vohra [24].
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The second degree of government involvement implies unbundling of the vertically

integrated industry. Unbundling allows for separate pricing at each level. The second-level

infrastructure service becomes an essential facility for the operators of first-level services,

usually utility networks, on which the essential facility doctrine can be applied. There exist

two major approaches to the ‘efficient’ pricing of essential input facilities: the ’efficient

component’ or parity pricing rule, and the Laffont-Tirole Ramsey pricing rule. The first

rule is the principle that the holder of the bottleneck facility should offer its services at

a price that yields it the same contribution that it would earn from performing the end-

user or first-level service itself. The second rule recognizes the fact that the profit of the

integrated incumbent is an increasing function of both the access charge and the final retail

price. Both approaches accept the fact that these prices distort allocative efficiency. Just

as is the case in most models in the theory of public finance, these rules are preoccupied

with extracting money from the market so as to supply the government with sufficient

funds. The public authority may appoint a regulator for this second type of models and

instruct him to control the price-quality ratios on each level separately. In some countries,

regulators are also appointed to restrain market failures. These regulators are gradually

receiving tasks that aim to re-establish some structure in the de-integrated industry and

to give some coherence, safety and equity in the service provision3. This public task of

the regulator fits better in the design of governance under third-degree of government

involvement. This third-degree government involvement is also applicable to the theory

of public projects or club theory, see [8] and [17]. Our infrastructure service may be

considered a specification of a public project. It also fits in the approach of Ellickson et al.

[10] if the entire infrastructure service may be considered a competitive club. In that case,

the authors show that a decentralised price-taking equilibrium exists with Pareto optimal

allocations that belong to the core.

The solution concept proposed in this paper fits the third degree of government

involvement and is consistent with the first degree. The public authority determines the

rules of the game rather than the outcome of the game. These rules concern the coordi-

nation between the various levels by means of principal-agent contracts. Since the basic

contract involves partners belonging to different domains, such a contract is called a PPP-

3The Office of the Rail Regulator, ORR, established in the U.K. in 1992, has the following functions:

(i) the issue of licences to operate trains and networks; (ii) the enforcement of competition law; (iii)

the approval of agreements for access by operators of railway assets to track and stations; (iv) customer

protection and promotion of passengers’ interests. The Rail Regulator is charged with the responsibility

of carrying out these functions in a way which will: promote the use and development of a national

railway network; minimise the regulatory burden; ensure commercial certainty and security; consider the

environmental effect of railway services; consider the financial position of the Franchising Director and

holders of licences.
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contract. The guiding principle in such a contract is that the users of the lower-level service

determine the higher-level service and pay for it according to their willingness to pay. The

governance of an infrastructural industry is determined by the economic structure of the

industry. Whenever there exists a complementarity between a public service and private

services, a public private partnership may be established. The contract describes the way

user-tariffs are defined and levied. Modern technical developments as computer chips make

it possible for the industrial organization to discriminate between different groups of users

giving different signals. If this is the case, we argue that:

(i) When the infrastructure service can be decomposed into a second-level public ser-

vice and a complementary first-level, privately accountable service to its users, which

service is possibly a marketable service, then the social benefit of the second-level

service can be deduced from first-level service and a third-degree government in-

volvement is possible.

(ii) When the infrastructure service cannot be decomposed into a second-level public

service and a complementary first-level service to its users, then the social benefit

is economically determined by Lindahl prices and has to be revealed by a political

mechanism. A first-degree government involvement is required.

(iii) The proposed solution concept allows for a combination of both situations, gener-

ating and supporting economically efficient prices for the optimal level of an infras-

tructure service that fully finance the cost of this infrastructure.

(iv) The prices and the allocation related to this infrastructure service belong to a general

equilibrium that is efficient and is shown to exist.

The idea of restricting preferences by some form of complementarity has been in-

troduced by Mäler [16]. His concept of weak-complementarity differs strongly from our

concept. Ebert [9] has followed Mäler’s line of thought. The model introduced here is

a modification of an earlier model introduced by Ruys [21], see also Ruys and van der

Laan [22]. The earlier model deals with a so-called semi-public good, being a public good

(e.g. infrastructure) that is characterized by the fact that its use is being complemented

by certain private goods. For example, households and firms (transport sector) make use

of the public good ‘road’ in combination with their private good ‘car’ or ‘truck’. In Ruys

and van der Laan [22] a model was developed in which the public good is financed by a

lump-sum payment of the public sector and mark-ups on the market prices for the comple-

mentary private commodity good, collected by the private sector. The users are willing to

pay these mark-ups because they are constrained on the use of the complementary private

commodity by the limited availability of the public good. These mark-ups can be utilized
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for financing the costs of the public good. The problem is that the private sector must be

willing to cooperate in collecting the mark-ups. This paper reflects the technical develop-

ments of the last decennium. By applying computer technology to monitoring and paying

services, the willingness to pay mark-ups on the private commodity, can be utilized by an

operational system forcing the users to pay directly for the use of the infrastructure.

The basic idea of this paper is that the use of infrastructure may be constrained by

the size of the infrastructure, e.g. the consumption (in kilometers) of the private service

‘car driving’ (with price equal to the cost of car driving per kilometer) is constrained by the

size of the road system. This constraint might be implicitly expressed in the consumer’s

utility function or the producer’s production function, but in this paper we assume that the

constraint is also given explicitly. This explicit formulation makes it possible to distinguish

two effects: (i) the direct effect on utility because of the fact that the availability of the

infrastructure service appears in the consumer’s utility function, (ii) the indirect effect on

utility through the weakening of the constraint. The direct effect has to be measured by the

public sector by means of a political mechanism. It contributes to the lump-sum payment

of the public sector to finance the infrastructure. The indirect effect will show up as what

the user is willing to pay for the use of infrastructure if this use is constrained and can be

measured by the road operator. If no user in the economy feels himself constrained in the

use of the infrastructure, then the industry reduces to a pure public good industry with, if

desired, Lindahl prices. On the other hand, when the direct effect is not relevant because

users do not derive direct utility from the availability of infrastructure, then the industry

reduces to a pure market industry and the infrastructure has to be financed only by the

revenues from pricing the use of the infrastructure.

This paper is organized as follows. In Section 2 the economy is given in terms

of the agents’ characteristics. In Section 3 we state the first order conditions for Pareto

efficient provision of infrastructure. The equilibrium structure to implement a Pareto

efficient allocation is given in Section 4. An operational mode for inplementing a system

for financing infrastructure is discussed in Section 5. Finally, technical details and existence

of equilibium are discussed in the Appendix.

2 The economic ability structure

We consider a model of an economy with one type of public private service (pp-service),

which is a (local) public service that is complementary to a specific private user service.

The restriction to one pp-service is only for expositional reasons and is not essential for

our approach. An example of a pp-service is an infrastructure service, such as a public

road system that is utilized by owners of private cars and by firms transporting commodi-
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ties. The complementarity of the pp-service may follow implicitly from utility functions or

production functions in the economy, but since it is a central characteristic of the problem

addressed, it is formulated explicitly. In this paper, the private service is interpreted as a

private mobility or transport service that requires the complementary public road system.

The size of the infrastructure effects the use of it by an individual agent. The use of this

private service is measured on a one-dimensional scale, which will serve as the tax base for

the use of the infrastructure. This measure may be refined arbitrarily to include various

types and categories of public services and of user services. Examples of such an index

are: the number of kilometers times the weight a specific vehicle uses the road system, or

the number of liters of gasoline a specific vehicle needs to use the road system for some

distance. A refinement of indices allows the user to substitute not only between types of

vehicles, but also between modes of transport.

Besides the public private service, being a pair specifying the level of public in-

frastructure available in the economy and the private use of the infrastructure made by a

specific user, we have a private commodity complementary to the use of the infrastructure,

to be called the complementary private commodity, and n private commodities not related

to the infrastructure, indexed by j = 1, . . . , n and to be called pure private commodities.

There are m + 1 private agents, namely a set H = {2, . . . ,m} of m − 1 consumers or

households, indexed by h = 2, . . . ,m and a set F = {0, 1} of two private firms: one firm

producing infrastructure indexed by f = 0 and one firm producing the private complemen-

tary commodity indexed by f = 1.

All households and the private commodity firm f = 1 are users of the public private

service. We denote the set of users by I , i.e. I = H ∪ {1} = {1, . . . ,m}. The pp-service of

a user i ∈ I is given by a pair (si, z) of nonnegative real numbers, where z denotes the level

of infrastructure available in the economy and si denotes the private service or the use of

the infrastructure, measured in terms of the chosen one-dimensional scale. For each user

i ∈ I , there exist a nonnegative increasing function qi: IR+ → IR+, reflecting the individual,

subjective constraint on the use si induced by the level z of the availability of the public

infrastructure, i.e. for any pair (si, z) of the pp-service the inequality

si ≤ qi(z), i ∈ I, (1)

holds. For the execution of the use (si, z) of the pp-service, also the complementary private

good is needed. For simplicity and without loss of generality we assume that one unit of

the complementary private good is needed for every unit of the use si of the infrastructure.

For example in case of car driving with gasoline as the complementary private good, the

use of the infrastructure is measured in such a way that for each unit of the use of the

infrastructure one unit of gasoline is needed. So, in the remaining of this paper, si denotes

6



both the use of infrastructure of user i and the need of user i for the complementary private

good.

Each user h ∈ H has a utility function uh(xh, sh, z) on Xh = IRn+2+ , where xh ∈ IRn+
is the consumption of the n private goods, and as above, z is the level of infrastructure,

available to all consumers, and sh is the private use of the infrastructure by consumer h.

Recall from above that this implies that the consumer also uses sh units of the comple-

mentary private commodity. Since this consumption does not yield utility on its own, but

only is needed to make use of the infrastructure, the consumption of this commodity does

not appear explicitly in the utility function. Otherwise stated, the use sh reflects both the

use of the infrastructure and the consumption of the complementary private commodity:

one may see it as a mobility service in which the private and public aspects melt together.

In this formulation of the utility function, the infrastructure enters the utility function

directly as a public availability service. One may discard this service from the utility func-

tion, reducing the utility function to a function uh(xh, sh) not depending on the level z

of infrastructure. However, observe that in this case the level of infrastructure affects the

utility indirectly through the constraint inequality (1). Consumer h is assumed to have an

initial endowment ωh ∈ IRn+ of the n pure private commodities.

User 1 is the firm producing the private complementary commodity and is modelled

by a transformation function T 1: IRn+2 → IR yielding the set of all feasible production plans

(x1,−s1, y1) given by

T 1(x1,−s1, y1) ≤ 0, (2)

where x1 ∈ IRn− is an n-vector of inputs of the pure private commodities, s1 ≥ 0 is the

use made by the industry of the infrastructure, i.e. −s1 is an input for the production

sector, and y1 ≥ 0 is the output of the complementary private good. Observe that on the

one hand the complementary good needed for the use of infrastructure is produced by the

firm, while on the other hand, according to modern theories, see for instance Biehl [1], the

use of infrastructure is incorporated as one of the inputs, and hence the firm needs also an

amount of −s1 units of the complementary good as input in the production process. So,

the complementary private good is produced by the firm, but also appears as input: the

pp-service of the infrastructure. Recall that the use of the infrastructure is constrained by

the availability of the infrastructure by constraint (1) given by s1 ≤ q1(z).

Firm 0 produces the infrastructure and is modelled by a transformation function

T 0: IRn+1 → IR yielding the set of all feasible production plans (x0, z) given by

T 0(x0, z) ≤ 0, (3)

where x0 ∈ IRn− is an n-vector of inputs of the n pure private commodities and z ≥ 0 is the
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output of infrastructure.4 With respect to the level of infrastructure, we assume that z in-

dicates the yearly lease of the infrastructural capacity in real terms, including depreciation,

maintenance, and so forth. Since the model only concerns one period and infrastructure is

not built anew each period, the level z represents the level of infrastructure being available

from the past, and the possible expansion or contraction of this infrastructure today and

in the future. So, at an efficient production plan (x0, z), the costs of the vector x0 of inputs

are the costs of the production of infrastructure that is accountable for today. If z is chosen

to be zero, this means that one chooses for the fastest contraction of the infrastructure

possible.

The economic ability structure is denoted by E = {T 0, (T 1, q1), (uh, qh, ωh), h ∈ H}.

We assume that E is regular, i.e. the utility functions, transformation functions and the

constraint functions are continuously differentiable, the utility functions are monotonically

increasing and strictly quasi-concave, the transformation functions are strictly concave and

satisfy T f(0) = 0, f = 0, 1, and all vectors ωh are strictly positive.

3 Efficiency conditions in the ability structure

In this section efficiency conditions in the economic ability structure E are derived. An

allocation e for the economy E is a collection of private consumption plans (xh, sh), h ∈

H, and production plans (x0, z) and (x1,−s1, y1). For simplicity we restrict ourselves to

interior allocations and so we restrict ourselves to allocations in which all quantities of

consumption, inputs and outputs are not equal to zero and have the appropriate sign. In

particular this convention implies that for any allocation e that (xh, sh, z) ∈ Xh, h ∈ H,

holds by definition.

Definition 3.1 (Feasible allocation)

An allocation e = {(x0, z), (x1,−s1, y1), (xh, sh), h ∈ H} is feasible for the economy E if

(i) the inequalities (1) - (3) are satisfied,

(ii)
∑
h∈H xh − x0 − x1 ≤

∑
h∈H ωh,

(iii) s1 +
∑
h∈H sh ≤ y1.

Condition (i) includes the perceived constraints (1) on the use of infrastructure by the users

(households and the complementarity commodity firm), and the production constraints (2)

and (3). The other two conditions are the market clearing conditions. Condition (ii) states

4Only for simplicity the infrastructure firm is assumed not to be a user of infrastructure. However, the

model can be easily generalized to the case that also this firm uses infrastructure.
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that for the pure private commodities the total demand of the households and the firms

is at most equal to the total initial endowments, and condition (iii) states that the total

need for the complementary private good (measured in units of the use of infrastructure)

is at most equal to the production of this commodity. In the following the set A denotes

the set of all feasible allocations. For an allocation e, let uh(e) = uh(xh, sh, z) denote the

corresponding utility level of consumer h, h ∈ H.

Definition 3.2 (Efficient allocation)

An allocation e is efficient if it is feasible and there does not exist an other feasible allocation

e′ ∈ A, such that uh(e′) > uh(e) for all h ∈ H.

The efficiency conditions are derived from maximizing a social welfare functionW : IRm−1 →

IR assigning welfare levelW (uh, h ∈ H) to utility levels uh, h ∈ H, which is nondecreasing

in uh, h ∈ H, and strictly increasing in at least one uh. From Definition 3.2 it follows that

for any efficient allocation there exist nonnegative weights αh, h ∈ H with
∑
h∈H αh = 1

such that it maximizes the social welfare
∑
h∈H αhu

h over the set of feasible allocations.

Reversely, the necessary first order conditions for an efficient allocation follow from the

maximization problem

max{
m∑
h=2

αhu
h(e)|e ∈ A}. (4)

Differentiating the Lagrangian function associated to this maximization problem

with respect to the multipliers corresponding to the constraints given in (1), (2), (3) and

the market clearing constraints (ii) and (iii) of Definition 3.1 we get the following com-

plementarity restrictions between the constraints (on the left side) and the corresponding

multipliers (on the right side), where a ≤ 0 ⊥ b ≥ 0 means a ≤ 0, b ≥ 0 and a · b = 0,

si − qi(z) ≤ 0 ⊥ βi ≥ 0, i ∈ I, (5)

T 0(x0, z) ≤ 0 ⊥ λ0 ≥ 0, (6)

T 1(x1,−s1, y1) ≤ 0 ⊥ λ1 ≥ 0, (7)∑
h∈H

xhj − x0j − x1j −
∑
h∈H

ωhj ≤ 0 ⊥ µj ≥ 0, j = 1, . . . , n, (8)

s1 +
∑
h∈H

sh − y1 ≤ 0 ⊥ µc ≥ 0. (9)

For simplicity in the remaining of the paper we assume that in an efficient allocation

e = {(x0, z), (x1,−s1, y1), (xh, sh), h ∈ H} both firms are active and that demand equals

supply, i.e. the constraints on the left side of the complementarity conditions (6), (7),

(8) and (9) hold with equality and the corresponding right side shadow prices are strictly

positive. To clarify the further discussion, we rewrite the condition (5) explicitly as

βi = 0 if si − qi(z) < 0,

βi ≥ 0 if si − qi(z) = 0,

 i ∈ I, (10)
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showing that the shadow price βi on the use of the infrastructure by user i is equal to zero

when the constraint is not binding. Differentiating the Lagrangian associated with the

maximization problem (4) with respect to the quantity variables (stated below between

brackets) in e = {(x0, z), (x1,−s1, y1), (xh, sh), h ∈ H} gives the first order conditions:

(xhj ) αh
∂uh

∂xhj
− µj = 0, h ∈ H, j = 1, . . . , n, (11)

(sh) αh
∂uh

∂sh
− βh − µc = 0, h ∈ H, (12)

(x0j) −λ0
∂T 0

∂x0j
+ µj = 0, j = 1, . . . , n, (13)

(x1j) −λ1
∂T 1

∂x1j
+ µj = 0, j = 1, . . . , n, (14)

(s1) λ1
∂T 1

∂s1
+ β1 + µc = 0, (15)

(y1) −λ1
∂T 1

∂y1
+ µc = 0, (16)

(z)
∑
h∈H αh

∂uh

∂z
+
∑
h∈H βh

∂qh

∂z
+ β1

∂q1

∂z
− λ0

∂T 0

∂z
= 0. (17)

To focus on the first order condition for the production of infrastructure, we concen-

trate on equation (17). Choosing any private commodity j, the variables αh can be solved

from the equations (11) and the variable λ0 from (13). Then substituting these expressions

into equation (17) yields for any chosen j = 1, . . . , n∑
h∈H

µj
∂uh/∂z

∂uh/∂xhj
+
∑
h∈H

βh
∂qh

∂z
+ β1

∂q1

∂z
= µj

∂T 0/∂z

∂T 0/∂x0j
. (18)

Now we consider two cases. First, suppose that none of the user constraints si ≤ qi(z) is

binding, i.e. no user feels herself to be constrained in the use of infrastructure because of

a (too) low level of infrastructure. Then according to the conditions in (10) all shadow

prices βi, i ∈ I , are equal to zero and for each j = 1, . . . , n equation (18) reduces to∑
h∈H

∂uh/∂z

∂uh/∂xhj
=

∂T 0/∂z

∂T 0/∂x0j
, (19)

showing the well-known first order condition for a pure public good, i.e. for any given

private commodity the sum over all consumers of the marginal rates of substitution be-

tween the public good and the private good is equal to the producer’s marginal rate of

transformation between the public good and the private good.

Second we consider the case that at least one of the users is constrained in the use of

infrastructure. For any j = 1 . . . n and for any household h ∈ H it follows from equations

(11) and (12) that

βh

µj
=

∂uh/∂sh

∂uh/∂xhj
−

µc

µj
, (20)
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while from equations (14) and (16) it follows that

µc

µj
=

∂T 1/∂y1

∂T 1/∂x1j
, (21)

and thus

βh

µj
=

∂uh/∂sh

∂uh/∂xhj
−

∂T 1/∂y1

∂T 1/∂x1j
. (22)

This shows that the ratio of consumer h’s shadow price on the use of infrastructure and

the shadow price of commodity j is equal to the difference of consumer h’s marginal rate of

substitution between the use of the infrastructure and the private good j and the marginal

rate of transformation of the complementary private good produced by firm 1 and the input

good j of firm 1. Recalling that an equal amount of units of the complementary good is

needed for the use of the infrastructure, equation (22) reflects as a mark-up consumer h’s

willingness to pay for the use of infrastructure (in units of good j) above the marginal

costs of the use to be paid for the complementarity good. Analogously it follows for the

willingness to pay of the private commodity producer for the use of infrastructure as an

input in its production process that

β1

µj
=
−∂T 1/∂s1

∂T 1/∂x1j
−

∂T 1/∂y1

∂T 1/∂x1j
, (23)

showing that the ratio of the producer’s shadow price on the use of infrastructure and the

shadow price of commodity j is equal to the difference of the producer’s marginal rate

of transformation between the use of the infrastructure and the private good j and the

marginal rate of transformation of the produced complementary good and the private good

j.5 So, equation (23) reflects the producer’s willingness to pay for the use of infrastructure

above the marginal costs of the complementarity good needed for the use.

Substituting the equations (22) and (23) for βh, h ∈ H, and β1 in equation (18) we

obtain

∑
h∈H

∂uh/∂z

∂uh/∂xhj
+
∑
h∈H

(
∂uh/∂sh

∂uh/∂xhj
−

∂T 1/∂y1

∂T 1/∂x1j

)
∂qh

∂z
+

(
−∂T 1/∂s1

∂T 1/∂x1j
−

∂T 1/∂y1

∂T 1/∂x1j

)
∂q1

∂z

=
∂T 0/∂z

∂T 0/∂x0j
. (24)

So, when some of the constraints on the use are binding, the first order condition for the

production of infrastructure says that with respect to any pure private good j it must

hold that the sum of the marginal rates of substitution of all consumers plus the sum of

5Observe that −∂T 1/∂s1 > 0, because −s1 is an input and hence T 1 is increasing in −s1.
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the mark-ups the users are willing to pay is equal to the marginal rate of transformation

of the producer of infrastructure, where the mark-up of a user equals her willingness to

pay for the complementarity good beyond the cost of the complementarity good times the

marginal relaxation of the constraint when more infrastructure is produced.

The main advantage of this economic organization is that it is possible to discrimi-

nate between users who are and who are not constrained by the infrastructure, because it

can observe demand behavior for the complementary good. This information may solve the

difficult problem of determining the individual contributions to the provision of a public

good as infrastructure.

4 The institutional structure: a Public Private Part-

nership Equilibrium

In this section we formulate an institutional framework to implement an efficient allocation.

This institution is the equilibrium framework in the private ownership economy. In this e-

conomy the two firms are profit maximizing firms and the consumers are utility maximizing

agents. Moreover, we establish public private partnership which organizes and exploits the

public private infrastructure service. This public private partnership is a principal-agent

relation. The principal is the public infrastructure agency, the agent is the infrastruc-

ture operator. Both enter in a contractual relation in which the mutual intentions to be

discussed below are specified. Notice that the agency has an institutional task and the

operator a managerial task. The agency determines the optimal level of the infrastructure

service, which is that level at which the sum of the individual prices for the availability

of infrastructure and the sum of all mark-ups the users are willing to pay for the use of

infrastructure, is equal to the marginal rate of transformation for infrastructure with re-

spect to the numeraire commodity. The operator decides to buy the level of infrastructure

from the infrastructure firm when he is able to collect enough contributions to cover the

costs. These contributions come from two different sources. First, the agency collects the

valuation of the users of the availability of infrastructure as a pure public good and pays

the total amount of these valuations to the operator. Second, the operator is empowered

by the agency to set tariffs, regulated by the agency, on the use of the infrastructure. The

profit of the operator is the difference between the revenues from these two sources and the

costs of providing the determined level of infrastructure. It will be shown that under some

conditions on the constraint functions in equilibrium this profit is nonnegative, so that the

operator is willing to perform his task.

As usual in a private ownership economy, all profits are distributed amongst the

consumers. So, let φhf be the share of consumer h, h ∈ H, in the profit of firm f , f = 0, 1

12



and φh the share of h in the profit of the operator. All shares are assumed to be nonnegative

and satisfy
∑
h∈H φhf = 1 for f = 0, 1, and

∑
h∈H φh = 1.

To define the equilibrium concept, let p ∈ IRn be the vector of prices of the n

pure private commodities, py the price of the complementary private commodity and pz

the price of one unit of the infrastructure. Commodity one is assumed to serve as the

numeraire commodity with price p1 = 1. According to the well-known concept of Lindahl

equilibrium (see [18] or [3]), we also define for each h ∈ H a personal price ph as the

public good contribution consumer h has to pay for each unit of available infrastructure.

Moreover for each user i ∈ I we define a tariff ti to be paid for each unit of use of the

infrastructure. This tariff reflects the shadow price of the quantity constraint qi(z) on the

use of infrastructure. This reasoning has analogies in fixed price theory, from which it is

well-known that quantity-constrained allocations can be sustained by virtual taxation, i.e.

quantity constraints in an equilibrium under fixed prices can be replaced by virtual taxes

and a redistribution of the revenues of the taxes (see e.g. Neary and Roberts [19] and

Cornielje and van der Laan [5], see also Ruys [20]). Finally, let mh denote the income of

consumer h, h ∈ H, πf the profit of firm f , f = 0, 1 and π the operator’s profit, all to be

defined later. In the following mH denotes the collection of incomes mh, h ∈ H, pH the

collection of personal contributions ph, h ∈ H and tI the collection of tariffs ti, i ∈ I .

We first consider the problem of the public agency. This agency has to determine

on the personal contributions pH and user tariffs tI and the production price pz. Given

some feasible allocation e = {(x0, z), (x1,−s1, y1), (xh, sh), h ∈ H}, for each h ∈ H the

agency sets the individual price ph to be paid for each unit of the level z of infrastructure

in this allocation equal to

ph =
∂uh/∂z

∂uh/∂xh1
, (25)

being the marginal rate of substitution of consumer h between the level z of the infrastruc-

ture and her consumption xh1 of private good 1. With respect to the tariffs, first observe

that according to Definition 3.1 any feasible allocation satisfies the quantity constraints on

the use of infrastructure, i.e. si ≤ qi(z) for all i ∈ I . According to the reasoning given

above, for each user i ∈ I the tariff ti to be paid for each unit of use of the infrastructure is

set equal to the shadow price of the quantity constraint qi(z). So, the tariff is set equal to

the willingness to pay for the use of infrastructure above the price py of the complementary

commodity and thus, for h ∈ H, th is set equal to

th =

 = 0 if sh < qh(z),

= ∂uh/∂sh

∂uh/∂xh1
− py if sh = qh(z).

(26)
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and for firm 1 the tariff t1 is set equal to

t1 =

 = 0 if s1 < q1(z),

= −∂T 1/∂s1

∂T 1/∂x11
− py if s1 = q1(z).

(27)

Finally, the production price is set equal to

pz =
∑
h∈H

ph +
∑
i∈I

ti
∂qi

∂z
. (28)

.

Given the feasible allocation e = {(x0, z), (x1,−s1, y1), (xh, sh), h ∈ H}, and

the prices pH and tariffs tI set by the agency, the operator exploits the public private

infrastructure service by buying from the infrastructure firm 0 the level z of infrastructure

against price pz per unit of infrastructure. To fund the costs of the infrastructure the

operator collects revenues from two sources. The first source consist of the consumers’

contributions ph, h ∈ H, per unit of the level of infrastructure and the second one are the

revenues from the tariffs ti, i ∈ I , the users have to pay for the use of the infrastructure.

The operator’s profit is the difference between the revenues of exploiting the infrastructure

and the cost of providing the infrastructure and is therefore given by

π(z, pH, tI) =
∑
h∈H

phz +
∑
i∈I

tisi − pzz. (29)

Observe that ph = 0 when the utility of consumer h does not depend on z, i.e. when

uh = uh(xh, sh). When this holds for all consumers equation (29) reduces to

π(z, pH, tI) =
∑
i∈I

tisi − pzz. (30)

It will shown below that, under some conditions on the constraint functions, in equilibrium

the operator’s profit is nonnegative.

The firms are profit maximizing. Given prices p ∈ IRn and pz ∈ IR the maximization

problem for firm 0 becomes

max
x0,z

n∑
j=1

pjx
0
j + pzz s.t. T 0(x0, z) ≤ 0. (31)

The solution to this problem is denoted by(
x0(p, pz), z(p, pz)

)
∈ IRn− × IR+,

specifying the demands for the private commodities and the supply of infrastructure. The

corresponding profit is given by

π0(p, pz) =
n∑
j=1

pjx
0
j(p, pz) + pzz(p, pz).
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Firm 1 is a user of the infrastructure and thus has to pay the price py for each unit of

the complementary private good and an additional tax t1 for each unit of use. Furthermore,

this firm produces the complementary commodity. So, given prices p ∈ IRn+, py ∈ IR and

tariff t1 ≥ 0 the maximization problem for firm 1 becomes

max
x1,−s1,y1

n∑
j=1

pjx
1
j − pys

1 − t1s1 + pyy
1 s.t. T 1(x1,−s1, y1) = 0. (32)

Observe that the tariff to be paid on the use s1 replaces the quantity constraint on the use.

The solution to this problem is denoted by(
x1(p, py , t

1), −s1(p, py , t
1), y1(p, py , t

1)
)
∈ IRn− × IR− × IR+,

specifying the demand and supplies of the pure private commodities, the demand for the

complementary commodity related to the use of infrastructure and the supply of the com-

plementary commodity produced by the firm. The corresponding profit is given by

π1(p, py , t
1) =

n∑
j=1

pjx
1
j(p, py , t

1)− (py + t1)s1(p, py, t
1) + pyy

1(p, py , t
1).

Finally we consider the consumers. The expenditures of consumer h consists of the

costs of her consumption of the pure private commodities, the contribution ph she has to

pay for each unit of the level of infrastructure to the public agency, and his expenditures for

the use of infrastructure, being the price py to be paid for each unit of the complementary

private good and the additional tax th to be paid for each unit of use to the operator. So,

given prices p ∈ IRn, py ∈ IR and ph ≥ 0, tariff th ≥ 0 and income mh > 0, consumer h

solves the utility maximizing problem

max
xh,sh,z

uh(xh, sh, z) s.t.
n∑
j=1

pjx
h
j + pys

h + thsh + phz ≤ mh. (33)

Again the tariff to be paid on the use sh replaces the quantity constraint on the use. The

solution to this problem is denoted by(
xh(p, py, t

h, ph,mh), sh(p, py , t
h, ph,mh), zh(p, py, t

h, ph,mh)
)
∈ IRn+ × IR+ × IR+,

specifying the demands for the private commodities, the demand for the complementary

commodity, being equal to the use of infrastructure, and the ‘demand’ of infrastructure of

consumer h, being the level of infrastructure that maximizes her utility given the price ph

to be paid for each unit of z.

We are now able to define a Public Private Partnership Equilibrium (PPPE) for

the private ownership economy EP = {T 0, (T 1, q1), (uh, qh, ωh, φh0, φh1, φh), h ∈ H} with

Public Private Partnership.
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Definition 4.1 Public Private Partnership Equilibrium (PPPE)

A Public Private Partnership Equilibrium for the private ownership economy EP with

Public Private Partnership is a feasable allocation e = {(x0, z), (x1,−s1, y1), (xh, sh), h ∈

H}, a collection mH of incomes, commodity prices (p, py , pz) ∈ IRn+2, personal infrastruc-

ture prices pH , tariffs tI and profits π0, π1 and π such that

(i) pH satisfies (25),

(ii) tI satisfies (26), respectively (27),

(iii) π0 = π0(p, pz), π1 = π1(p, py , t1) and π = π(z, pH, tI),

(iv) for all h ∈ H, mh =
∑n
j=1 pjω

h
j + φh0π0 + φh1π1 + φhπ,

(v) for all h ∈ H, xh = xh(p, py , th, ph,mh) and sh = sh(p, py, th, ph,mh),

(vi) for all h ∈ H, zh(p, py, th, ph,mh) = z,

(vii) x0 = x0(p, pz) and z = z(p, pz)

(viii) x1 = x1(p, py , t1), s1 = s1(p, py , t1) and y1 = y1(p, py , t1),

(ix)
∑
h∈H xh − x0 − x1 =

∑
h∈H ωh,

(x)
∑
i∈I s

i = y1,

(xi) pz satisfies (28).

First, observe that an equilibrium allocation is defined to be a feasible allocation and thus

all constraints of Definition 3.1 are satisfied, in particular the users’ demands for the use

of infrastructure satisfy their quantity constraints. Next, the first two conditions (i) and

(ii) say that the correct personal prices and tariffs are determined, i.e. the personal prices

and tariffs satisfy the first order conditions for efficiency. Conditions (iii) and (iv) say that

the profits and incomes are correctly specified. Conditions (v) and (vi) say that in the

equilibrium allocation the consumptions of the consumers for the pure private commodi-

ties and the use of infrastructure are their utility maximizing consumptions and that for

each consumer h the level of infrastructure is equal to the optimal level of infrastructure

maximizing the utility of consumer h given the personal price to be paid. This corresponds

to the well-known Lindahl equilibrium condition for a public good in a pure public good

economy. Conditions (vii) and (viii) say that in the equilibrium allocation the production

plans of the two firms are profit maximizing. Conditions (ix) and (x) are the market clear-

ing conditions for the private commodities and the complementary commodity respectively.

Finally condition (xi) says that the sum of the personal prices plus the sum of the mark-ups
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the users are willing to pay for the use of infrastructure equals the price per unit of infras-

tructure, so that the first order efficiency equation (24) holds. Observe that in case none

of the quantity constraints on the use is binding, this reduces to the standard condition

in a pure public good Lindahl equilibrium saying that the sum of the personal prices is

equal to the price of infrastructure. Observe that the profits appear in the incomes of the

consumers and depends on the consumers’ decision. Therefore the incomes and profits are

taken explicitly in the definition of the equilibrium. Furthermore, it should be observed

that the level of infrastructure is determined by the profit maximizing infrastructure firm

yielding z = z(p, pz).

Once more we would like to stress the fact that the public agency only determines

the individual prices pH and the tariffs tI . Doing this correctly, in equilibrium all consumers

choose simultaneously the correct level of infrastructure, being the level chosen by firm 0 as

his profit maximizing output. We also want to stress again that in equilibrium the rationing

constraints on the use of infrastructure are satisfied, because of condition (ii), saying that

in equilibrium the tariffs are set equal to the shadow price of the use of infrastructure when

facing the constraint, i.e. the unconstrained demand of a user just equals the constraint

when the tariff is positive and is at most equal the constraint when the tariff is zero.

From the conditions in Definition 4.1 and the utility and profit maximizing behavior

of the private agents it follows immediately that a PPPE allocation satisfies all first order

conditions for an efficient allocation as derived in the previous section. So, taking the

second order conditions for granted, the following corollary follows straightforwardly.

Corollary 4.2

An PPPE allocation is efficient.

Finally we consider the operator’s profit. A necessary condition for the implemen-

tation of a PPPE by a Private Public Partnership relation between the public agency and

the operator ownership is that the operator’s profit is nonnegative. Clearly, otherwise no

operator willing to sign a contract for exploiting the infrastructure can be found. There-

fore we consider again the operator’s profit given by equation (29). In equilibrium we have

that the prices satisfy equilibrium condition (xi) and hence
∑
h∈H ph − pz = −

∑
i∈I t

i ∂qi

∂z
.

Substituting this in (29) and using the equilibrium properties (26) and (27) saying that

si = qi(z) if ti > 0, it follows that

π =
∑
i∈I

tisi(1− εi(z)), (34)

where εi(z) = ∂qi

∂z
· z
qi(z)

is user i’s individual infrastructure elasticity of the demand for

the complementary private good at the infrastructure level z. So, in equilibrium the op-

erator’s profit follows from the tariffs and the elasticities of the demands for the use of
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infrastructure and does not depend on the individual prices ph and the price pz, mean-

ing that the ‘pure public good’ feature of the infrastructure does not affect the operator’s

profit. From (34) it follows immediately that the operator’s profit is equal to zero if for

all i, εi(z) = 1 or ti = 0. In particular this holds when all constraint functions are linear

functions given by qi(z) = aiz for some ai > 0, i ∈ I and hence all elasticities are equal

to one. When qi is a strict concave function with qi(0) ≥ 0, then εi(z) > 1 and user i

provides a nonnegative contribution to the operator’s profit. So, a sufficient condition for

the public private partnership structure is that the constraint functions are weakly concave

nonnegative functions, guaranteeing that the operator is making nonnegative profits, i.e.

the participation constraint of the operator is satisfied and hence he is willing to participate

in the relationship.

To conclude this section it should be noticed that for the implementation of a

PPPE still the informational problem of finding the individual prices and the tariffs has to

be solved. To do so, some incentive mechanism is needed for the users to reveal this infor-

mation. Instead of doing so, in the next section we discuss an operational implementation

of a second-best equilibria based on the features of the model expressed by the first order

conditions, namely that the consumers and private producer are willing to pay for the use

of infrastructure. The existence proof of a PPPE is given in the Appendix.

5 Inefficiency costs of operational structures

In this section we discuss a practical possibility to implement a system for financing infras-

tructure based on the willingnesses to pay because of the perceived constraints on the use

of infrastructure. In order to focus on this issue, we make some simplifying assumptions.

Firstly, we assume that the public sector has solved the informational problem with respect

to the individual prices ph reflecting the marginal rate of substitution ∂uh/∂z

∂uh/∂xh1
, h ∈ H. S-

taying away from this problem, alternatively we may assume that the utilities only depend

on the use of infrastructure, but not on the level of availability, i.e. uh = uh(xh, sh) for all

h ∈ H. Doing so, we focus on the impact of the constraint on the use of infrastructure.

Furthermore, with respect to these constraints we assume for all i ∈ I that qi(z) = aiz for

some ai > 0. So, all elasticities are equal to one and in equilibrium the operator’s profit is

equal to zero.

Assumption 5.1

For the private ownership economy with Public Private Partnership EP the following holds:

(i) (no direct utility effects) for all h ∈ H it holds that uh = uh(xh, sh),

(ii) (unit constraint elasticities) for all i ∈ I it holds that qi(z) = aiz, for some ai > 0.
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Under Assumption 5.1 it follows that all individual prices ph are equal to zero, while the

derivatives of the constraint functions qi to z are equal to the coefficients ai, i ∈ I . So

condition (xi) of the PPPE definition 4.1 reduces to∑
i∈I

aiti = pz, (35)

with th, h ∈ H, and t1 satisfying (26), respectively (27). So, the price pz is given as soon as

the tariffs ti are known. Of course, here we still encounter the informational problem that

the willingnesses to pay that determine the tariffs ti are not known by the public agency.

The agency may, however, be advised by the operator, who can deduce prices from actual

behavior of the users. Here we may think that the agency is able to classify the users into

a number of more or less homogeneous groups, so that for each group the tariff to be paid

for the use of infrastructure can be determined by considering the representative user. In

the remaining of this section we will consider the extreme case of such an implementation,

namely the case in which all users are treated in the same way. This implementation of

a payment system is called infrastructure pricing.6 Of course such an implementation is

a second best solution. In this section we discuss on the loss of efficiency under such an

implementation.

Under the regime of infrastructure pricing each user has to pay a uniform tariff

for the use of infrastructure as far as the use is above some base level ŝ.7 Nowadays

such a system can easily be implemented by using electronic systems of payments. In the

following, let si+ = max[0, si − ŝ], i ∈ I , so si+ is the use as far as it is above the base

level. To have an effective system, the base level is chosen is such a way that the optimal

choice si of user i will be above the base level for at least a substantial fraction of the

users. Moreover we assume that ŝ < qi(z) for all i ∈ I . The latter assumption is innocent

because in practice this will be true for almost every user. Let t be the tariff to be paid per

unit of use above the base level. For the private producer the profit maximization problem

becomes

max
x1,−s1,y1

n∑
j=1

pjx
1
j − pys

1 − ts1+ + pyy
1 s.t. T 1(x1,−s1, y1) ≤ 0 and s1 ≤ q1(z). (36)

Observe that in this situation of a uniform tariff system the tariff to be paid for the use does

not guarantee that the quantity constraint becomes redundant. Analogously, the utility

maximization problem of consumer h, h ∈ H, becomes

max
xh,sh

uh(xh, sh) s.t.
n∑
j=1

pjx
h
j + pys

h + tsh+ ≤ mh and sh ≤ qh(z). (37)

6The terminology reflect the current debate in the Netherlands about introducing a system of road

pricing.
7The Dutch government considers to implement a road pricing system in which the users only have to

pay during rush hours. The free use outside rush hours can be seen as the use up to the base level.
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Considering this operational payment system, we want to discuss on the following

questions:

(i) What can be said about the revenues for the public private partnership?

(ii) What can be said about the efficiency of this system?

(iii) What are the consequences of this pricing system for the use of infrastructure?

Concerning the first question, the revenues of the operator depend on the uniform tariff t.

So, let R(t) denote the revenues at tariff t, then we have that

R(t) =
∑
i∈I

tsi+. (38)

Clearly, while R(t) = 0 for t = 0 the revenues may be expected to increase and to reach

a maximum at certain value t̂, and to decrease when t will be further increased, because

typically at the solutions of the maximization programs (36) and (37) the optimal values

of si+ will go to zero for t large enough. Now, let z∗ be the efficient level of infrastructure

in the PPPE allocation and let p∗z be the corresponding equilibrium price of infrastructure.

Now it is reasonable to assume that the maximum revenue satisfies

R(t̂) > p∗zz
∗. (39)

Then, there exists a tariff t∗ < t̂ such that the revenues are equal to the costs of imple-

menting the optimal level of infrastructure.

This brings us to the second question. Under condition (39) the tariff t∗ > 0 is

such that the revenues are just equal to the costs p∗zz
∗ of the efficient level z∗. So, in

general the system of a uniform tariff is able to sustain the efficient level of producing

new infrastructure. Then the informational problems of the agency of finding the optimal

individual tariffs are reduced to the more simple problem of finding the correct uniform

tariff t∗. Using market surveys this does not seem to be too difficult. Of course, the pricing

rule does not sustain an efficient allocation, because it does not discriminate between

users. More precisely, the uniform pricing rule does not take into account the individual

mark-ups expressing the willingnesses to pay and so the efficiency conditions (26) and (27)

are not satisfied. Therefore the uniform pricing rule seems to be quite reasonable as an

approximate solution to the socially optimal individual tariffs.

To answer the third question, we first consider the efficient equilibrium as given in

Definition 4.1 and partition the set of users into three groups. To do so, for i ∈ I , let si∗ be

the values of the use of infrastructure in the PPPE and recall that the use is free of charge

up to the base level ŝ. We now partition the set of users into three subsets by defining

I1 = {i ∈ I | si∗ ≤ ŝ} ,

I2 = {i ∈ I | ŝ < si∗ < qi(z∗)} ,

I3 = {i ∈ I | ŝ < si∗ = qi(z∗)} .

(40)
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Since we assumed that ŝ < qi(z∗) for all i ∈ I , in the efficient PPPE we have that the

individual tariff of user i is equal to zero when i ∈ I1 ∪ I2, while the tariffs are positive for

the users in I3. Now, suppose that the optimal uniform tariff t∗ will be used instead of the

individual tariffs. Under this tariff also the social efficient level z∗ is produced. Observe

that in both situations the operator’s profit is zero and hence there are no direct effects

on the incomes of the consumers. Ignoring the effects of replacing individual tariffs by

a uniform pricing rule on the prices of the other private commodities, the maximization

problems (36) and (37) only differ from the optimal programs (33) and (32) with respect

to the pricing on the use of infrastructure and the qunatity constraints, which in the PPPE

allocation are redundant in the latter. We can now consider the effects for the users in the

three groups defined above.

Clearly, for the group of users in I1 there is no difference between the uniform

tariff system and the optimal system of individual mark-ups. Because the use of these

users is below the base level, in both systems they do not have to pay for the use of the

infrastructure. So, as a result, also the use of infrastructure does not change for the users

in this group. Also for most of the users in group I3 there is no essential difference. At the

efficient PPPE, all agents in this group make use of the infrastructure up to their quantity

constraints and hence have to pay their individual tariff. Of course, in the PPPE some

users have to a high tariff, and others a low tariff, reflecting their individual preferences.

So, under a uniform system the users with a high willingness to pay are better off, the

users with a low willingness to pay are worse off. Some of the latter users may reconsider

their use and reduce their use below their constraint level. So, maybe some of the users

become unconstrained and hence move from group I3 to I2. However, for all other users

in I3 the use will remain equal to their constraint and hence also for these users the use of

infrastructure does not change.

Finally, we consider the users which are in group I2 under the system of individual

tariffs. These users are not constrained and do not have to pay for the use under the PPPE

set-up. However, under the uniform pricing rule they have to pay for the use above the

base level. As a consequence it may be expected that they will reduce their use. However,

the use is at most reduced to their use at the base level, because at that level they will

switch from group I2 into I1 and the use becomes free.

Summarizing we have the following. For the users in group I1 there is no difference

in what they have to pay and their use. The users in group I2 have free use in the PPPE

set-up and have to pay under the uniform pricing rule, resulting in some reduction of the

use, but not further than their use at the base level. The users in group I3 with high

willingness to pay have to pay less in the uniform system and will be better off. They will

not change their use: in both situations they will use up to the constraint level. The users
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in group I3 with low willingness to pay are worse off under the uniform system. The users

with very low willingness to pay may not be willing to use anymore up to their constraint

level and will reduce their use below that level. In most situations this will be the case

for a very small group of users in I3. When this is the case we may conclude from this

qualitatively analysis that the distortionary effects from using the uniform tariff system

instead of the individual tariffs are very small. Because it solves a lot of the informational

problems, the uniform system seems to be a very good alternative for the public private

partnership as a system for financing the production of new infrastructure. It is easy to

implement, the level of the tariff can be chosen such that the revenues are just enough to

cover the costs of the socially efficient level of production and the distortionary effects are

small.

6 Appendix: Existence of equilibrium

To prove the existence of a PPPE, first observe that all profits and incomes are homo-

geneous of degree one in the prices and tariffs (p, py , pz, pH , tI) and that all consumption

and production decisions of the agents are homogeneous of degree zero in (p, py, pz, pH , tI).

Denoting ζ = (p, py, pz, pH , tI), we therefore restrict the collection of the (n + 2m + 1)-

dimensional vectors ζ of prices and tariffs to the (n + 2m)-dimensional unit simplex

Sn+2m = {(ζ ∈ IRn+2m+ |
∑n+2m+1
k=1 ζk = 1}, where pk = ζk = pk for k = 1, . . . , n,

py = ζn+1 = py, pz = ζn+2 = pz, p
h = ζn+1+h = ph for h = 2, . . . ,m and ti = ζn+1+m+i = ti

for i = 1, . . . ,m. Further, let A ∈ IRn+, B > 0 and C > 0 be such that Aj >
∑
h∈H ωhj for all

j, B > max{z | T 0(x0, z) ≤ 0 and − x0 ≤ A} and C > max{y1 | T 1(x1,−s1, y1) ≤

0, −x1 ≤ A and s1 ≤ q1(B)}. So, A is greater than the total initial endowmen-

t and B and C exceed the maximal possible production of the public good and private

good, respectively. Furthermore, let K0 = {(x0, z) | T 0(x0, z) = 0 and − x0 ≤ A} and

K1 = {(x1,−s1, y1) | T 1(x1,−s1, y1) = 0, −x1 ≤ A and s1 ≤ q1(B)}. We now make the

following assumptions.

Assumption 6.1

The private ownership economy E = {T 0, (T 1, q1), (uh, qh, ωh, φh0, φh1, φh), h ∈ H} is

regular, i.e. the utility functions, transformation functions and the constraint functions are

continuously differentiable, the utility functions are monotonically increasing and strictly

quasi-concave, the transformation functions are strictly concave and satisfy T f(0) = 0,

f = 0, 1, for all h ∈ H, ωh1 is strictly positive and ωj =
∑
h∈H ωhj > 0 for all j = 1, . . . , n.

Instead of assuming that ωhj > 0 for all h and all j the weaker condition as stated in

Assumption 6.1 is sufficient.
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Assumption 6.2

The private ownership economy E = {T 0, (T 1, q1), (uh, qh, ωh, φh0, φh1, φh), h ∈ H} the

following holds:

(i) For any (x0, z) ∈ K0 it holds that z = 0 when x01 = 0,

(ii) For any (x1,−s1, y1) ∈ K1 it holds that y1 = 0 when x11 = 0,

(iii) T 1 satisfies that ∂T 1/∂y1

−∂T 1/∂s1
< 1 at any (x1,−s1, y1) such that s1 ≥ y1.

(iv) T 0 satisfies that for any ε > 0 there exists λ > 0 such that at any (x0, z) ∈ K0 with

z < λ it holds that ∂T 0/∂z

∂T 0/∂x01
> ε.

The first two assertions say that no output can be produced without any input of com-

modity 1. The third assertion says that the demand for use by firm 1 will never exceed

the supply of the complementary good by firm 1, guaranteeing that the net supply of

the complementary commodity is nonnegative. The last assertion says that under profit

maximization the production is strictly positive at any ζ satisfying pz
p1

> 0.

Assumption 6.3

For all i ∈ I, the function qi is concave and ∂qi(z)
∂z

continuous in z and bounded at z = 0.

The concavity of the constraint functions guarantees that in equilibrium the operator’s

profit is is nonnegative. The boundedness condition of the derivatives at z = 0 is a

technical condition implying that the mark-ups the users are willing to pay are bounded.

We now construct a function from the (n+2m)-dimensional unit simplex to IRn+2m+1

and show that this function has a stationary point. It then remains to show that such a

stationary point yields an equilibrium.

Let ζ = (p, py, pz, pH , tI) ∈ Sn+2m be a vector of prices and tariffs with p1 > 0. Then

under Assumption 6.1 and Assumption 6.2, part (i) the profit maximizing problem

max px0 + pzz s.t. (x0, z) ∈ K0

has a uniqe solution, to be denoted by (x0(ζ), z(ζ)), with corresponding profit π0(ζ). We

make the following additional assumption.

Assumption 6.4

Let ζk ∈ Sn+2m, k = 1, . . ., be a sequence converging to some ζ with p1 > 0 and pz = 0.

Then limk→∞
z(ζk)
pz

= N(ζ) for some real number N(ζ) > 0.
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The assumption implies that at any positive price of the first private commodity the

supply of infrastructure goes to zero when the output price pz goes to zero. Clearly, this

holds under Assumption 6.1, part (i). However, for technical reasons we assume a little bit

more, namely that the order of convergence to zero of z(ζ) when pz goes to zero is equal

to one.

Under Assumption 6.1 and 6.2, part (ii), also the profit maximization problem

max px1 − pys
1 − t1s1 + pyy

1 s.t. (x1,−s1, y1) ∈ K1

has a unique solution for p1 > 0, to be denoted by (x1(ζ), s1(ζ), y1(ζ)), with corresponding

profit π1(ζ). By the regularity assumption we have that all solutions and the profits are

continous in ζ and that also both π0(ζ) and π1(ζ) are nonnegative for all ζ ∈ Sn+2m.

Furthermore, we define the operator’s profit at ζ by

π(ζ) =
∑
i∈I

tiqi(z(ζ))(1− εi(z(ζ)),

where εi(z(ζ)) is user i’s infrastructure elasticity of demand at level z(ζ). Clearly, π is

continuous in ζ and by Assumption 6.3 also π(ζ) is nonnegative for all ζ ∈ Sn+2m.

For h ∈ H, the income mh(ζ) of consumer h given by

mh(ζ) = p�ωh + φh0π0(ζ) + φh1π1(ζ) + φhπ(ζ)

is continuous in ζ and nonnegative for all ζ ∈ Sn+2m. We now consider the restricted utility

maximizing problem

maxuh(xh, sh, z) s.t.

 pxh + pys
h + thsh + phz ≤ mh(ζ),

xh ≤ A, sh ≤ C, zh ≤ B.

Under the regularity assumption this problem has a uniqe solution, to be denoted by xh(ζ),

sh(ζ) and zh(ζ), where zh(ζ) is consumer h’s optimal level of infrastructure at ζ. Under

the regularity condition we have from the fact that ωh1 > 0 that mh(ζ) is positive at any ζ

with p1 > 0, while because of the monotonicity of the utility function and the constraints

xh(ζ) ≤ A, sh(ζ) ≤ C and zh(ζ) ≤ B it follows that there exists some (small) δ > 0 such

that xh1(ζ) = A1 when p1 < δ, which implies that in any PPPE we must have that p1 ≥ δ.

Therefore we restrict the set of vectors ζ to the set Sn+2mδ = {ζ ∈ Sn+2m | ζ1 ≥ δ}. So,

mh(ζ) > 0 for all ζ ∈ Sn+2mδ and from standard theory (see e.g. Debreu [6]) it follows that

for every h the demand functions xh, sh, zh are continuous in ζ on Sn+2mδ .

We now define the function f :Sn+2mδ → IRn+2m+1 by f = (fx, fy, fz, fH , f I), where

fx(ζ) =
∑
h∈H

(xh(ζ)− ωh)− x0(ζ)− x1(ζ),

fy(ζ) =
∑
i∈I

si(ζ)− y1,
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fz(ζ) =
z(ζ)

pz

∑
h∈H

ph +
∑
i∈I

ti
∂qi(z(ζ))

∂z
− pz

 ,

fHh (ζ) = zh(ζ)− z(ζ), h ∈ H,

f Ii (ζ) = si(ζ)− qi(z(ζ)), i ∈ I.

Clearly, the functions fx, fy, fH and f I are well-defined and continuous because of the

continuity of the demand and supply functions. Because of Assumptions 6.3 and 6.4 we

have that z(ζ)
pz

and ∂q
i(z(ζ))
∂z

are also well-defined (bounded) and continuous and thus also fz

is well-defined and continuous at any ζ ∈ Sn+2mδ . Therefore, the function f is a continuous

function on Sn+2mδ . Moreover the following lemma holds.

Lemma 6.5

For all ζ ∈ Sn+2mδ it holds that ζ�f(ζ) ≤ 0.

Proof.

From the definition of f(ζ) it follows that

ζ�f(ζ) = p�fx(ζ) + pyf
y(ζ) + pzf

z(ζ) + pH�fH(ζ) + tI�f I(ζ)

=
∑
h∈H p�(xh(ζ)− ωh)− p�x0(ζ)− p�x1(ζ)

+py(
∑
h∈H sh(ζ) + pys

1(ζ) − pyy
1(ζ)

+z(ζ)
∑
h∈H ph +

∑
i∈I t

i ∂q
i(z(ζ))
∂z

z(ζ)− pzz(ζ))

+
∑
h∈H phzh(ζ)− z(ζ)

∑
h∈H ph

+
∑
h∈H thsh(ζ) + t1s1(ζ)−

∑
i∈I t

iqi(z(ζ))

=
∑
h∈H

(
p�xh(ζ) + (py + th)sh(ζ) + phzh(ζ)− p�ωh

)
−(p�x0(ζ) + pzz(ζ))

−(p�x1(ζ)− (py + t1)s1(ζ) + pyy
1(ζ)

+
∑
i∈I t

i
(
z(ζ)∂q

i(z(ζ))
∂z

− qi(z(ζ))
)

+z(ζ)
∑
h∈H ph − z(ζ)

∑
h∈H ph

≤
∑
h∈H(m

h(ζ)− p�ωh)− (π0(ζ) + π1(ζ) + π(ζ))

= 0.

Q.E.D.

Observe that the inequality holds with equality when all budget constraints are satisfied

with equality, which is true when none of the feasibility constraints in the restricted utility

maximization problems are binding.

We now apply the next stationary point theorem, for a proof see for instance Van

den Elzen [13].
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Theorem 6.6

Let F be a continuous function from a convex and compact set S ⊂ IRk to IRk. Then F has

a stationary point ζ∗ ∈ S, i.e. there exists a point ζ∗ ∈ S, such that ζ�F (ζ∗) ≤ ζ∗�F (ζ∗)

for all ζ ∈ S.

So, let ζ∗ be a stationary point of the function f on Sn+2mδ . Then we have the following

lemma.

Lemma 6.7

Let ζ∗ be a stationary point of f on Sn+2mδ . Then f(ζ∗) ≤ 0.

Proof.

With Lemma 6.5 it follows that ζ∗ satisfies

ζ�f(ζ∗) ≤ ζ∗�f(ζ∗) ≤ 0, for all ζ ∈ Sn+2mδ . (41)

Now, let M = maxn+2m+1j=1 fj(ζ∗) and J = {j ∈ {1, . . . , n+2m+1} | fj(ζ∗) = M}. Suppose

M > 0. First consider the case that 1 ∈ K. Then it follows from inequality (41) that∑
j∈J ζ

∗
j = 1 must hold and hence ζ∗j = 0 for j �∈ J , implying that ζ∗�f(ζ∗) = M > 0,

which contradicts Lemma 6.5. In case 1 �∈ J , we must have that
∑
j∈J ζ

∗
j = 1− δ, ζ∗1 = δ

and ζ∗j = 0 for j �∈ J ∪{1}. Since xh1(ζ) = A1 > ω1 when p1 = δ, it follows that fx1 (ζ
∗) > 0,

again contradicting ζ∗�f(ζ∗) ≤ 0. So, it follows that M ≤ 0 and hence f(ζ∗) ≤ 0. Q.E.D.

We now prove the existence theorem.

Theorem 6.8 Let E = {T 0, (T 1, q1), (uh, qh, ωh, φh0, φh1, φh), h ∈ H} be a private own-

ership economy satisfying Assumptions 6.1, 6.2, 6.3 and 6.4. Then there exists a Public

Private Partnership Equilibrium.

Proof.

We have shown already that under the assumptions there exists a stationary point ζ∗ =

(p∗, p∗y, p
∗
z, p
H∗, tI∗) of f in Sn+2mδ . It remains to show that ζ∗ with the corresponding

profit and utility maximizing quantities satisfy the conditions of a PPPE. First, we show

the market conditions. From Lemma 6.5 and Lemma 6.7 it follows that fj(ζ∗) = 0 if

ζ∗j > 0. Since ζ∗1 = p∗1 ≥ δ > 0, it follows that fx1 (ζ
∗) = 0, i.e. the market of the first

commodity is in equilibrium. Suppose p∗j = 0 for some j = 2, . . . , n. Then it follows from

the monotonicity assumption and the restrictions in the utility maximizing problems that

xhj (ζ
∗) = Aj, implying that fxj (zeta

∗) > 0. Hence p∗j > 0 for all j, and thus fx(ζ∗) = 0,

which shows that all markets of the ordinary private commodities are in equilibrium. By

the profit maximizing behavior of firm 1 it follows that y1(ζ∗) = 0 if p∗y = 0, implying that
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fy(ζ∗) ≥ 0 if p∗y = 0. Hence also fy(ζ∗) = 0, showing that the market of the complementary

private commodity is in equilibrium. Analogously by the profit maximizing behavior of

firm 0 it follows that z(ζ∗) = 0 if p∗z = 0, implying that fHh (ζ∗) ≥ 0 if p∗z = 0 and thus

also fH(ζ∗) = 0, showing that for each consumer the optimal level of infrastructure equals

the production of infrastructure. Hence all the market clearing conditions are satisfied

and thus none of the boundedness restrictions in the utility maximizing problems and

profit maximizing problems are binding and so all consumers satisfy the unbounded utility

maximizing and both producers satisfy the unbounded profit maximizing conditions.

From the properties of f(ζ∗) it also follows immediately that ti∗ = 0 if f Ii (ζ
∗) =

si(ζ∗) − qi(z(ζ∗)) < 0 and so also the condition that the tariff is zero when the quantity

constraint on the use is non-binding is satisfied. To prove condition (xi) of Definition 4.1

we consider

fz(ζ∗) =
z(ζ∗)

p∗z

∑
h∈H

ph∗ +
∑
i∈I

ti∗
∂qi(z(ζ∗))

∂z
− p∗z

 ≤ 0.

First consider the case z(ζ∗) > 0, implying that also p∗z > 0 because of Assumption 6.2,

part (i). Then fz(ζ∗) = 0 because of the properties of f(ζ∗) and hence

p∗z
z(ζ∗)

fz(ζ∗) =
∑
h∈H

ph∗ +
∑
i∈I

ti∗
∂qi(z(ζ∗))

∂z
− p∗z = 0,

which shows condition (xi). In case z(ζ∗) = 0 we have that p∗z = 0 because of Assumption

6.2, part (iv). Then by Assumption 6.4 and the continuity of z(ζ) we have that z(ζ
∗)
p∗z

=

N(ζ∗) > 0. Hence

1

N(ζ∗)
fz(ζ∗) =

∑
h∈H

ph∗ +
∑
i∈I

ti∗
∂qi(z(ζ∗))

∂z
− p∗z ≤ 0.

Since p∗z = 0 and all other prices and tariffs are nonnegative, again the equation must hold

with equality.

Finally, by definition π0(ζ∗) and π1(ζ∗) are the profit maximizing profits and as

shown at the end of Section 4, also π(ζ∗) equals the equilibrium operator’s profit. Hence

also the consumers’ incomes are correctly specified. Finally, from the first order utility

maximization conditions (and firm 1’s profit maximization condition) it follows that pH∗

and tI∗ satisfy the equilibrium conditions (i) and (ii) of Definition 4.1. Q.E.D.
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