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Abstract

By introducing the notions of projects and shares, this paper studies a class of economic
environments, the so-called project-allocation situations, in which society may profit from
cooperation, i.e., by reallocating the initial shares of projects among agents. This paper
mainly focuses on the associated issues of compensation of losses and surplus sharing
arising from the reallocation of projects. For this purpose, we construct and analyze an
associated project-allocation game and a related system of games that explicitly models
the underlying cooperative process. Specific solution concepts are proposed.

JEL classification codes: C71, H70
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1 Introduction

This paper has two aims. Firstly, it develops a general framework for studying a class

of economic environments in which a coalition of agents cooperates in a combination of

projects: project-allocation situations. Secondly, within this framework, we analyze the

problems associated with a possible reshuffling of projects among agents, which asks for a

compensation of losses due to reshuffling and a proposal on sharing the surpluses arising

from enhanced efficiency.

In an economy characterized by changing capabilities and preferences of agents and

changing technology embodied in projects, people need to continuously adapt their posi-

tions to obtain efficiency. That is how our society has evolved into nowadays prosperity.

Every change in the production structure requires a reshuffling of responsibilities, which

is hard to implement if possible “losers” are not sufficiently compensated to cooperate.

When all parties gain from the change in the end, a win-win situation can be achieved.

Examples are abundant. Similarly, when extra profit is generated simply by cooperation

after reshuffling, a surplus sharing problem occurs. Obviously, solving the problems of

compensation and surplus sharing is essential for creating and maintaining flexibility and

creating efficiency in an economy. However, generally speaking, the two concepts are not

well distinguished in theoretical research so that the corresponding practical problems can

not be treated adequately. In a strict sense, compensation refers to a financial remuner-

ation to an agent for the loss caused by her being removed from some project. On the

other hand, surplus sharing deals with the extra benefits created by cooperation among

agents assigned to some combination of projects, which benefits are in excess of the sum

of individual payoffs. One may observe that trade unions have obtained generic rules for

laborers that include some compensation for lay-offs in a firm, as well as labor laws and

other safety nets on the macro-level. Our paper focuses on the micro-level. We assume

that gains and losses for every particular situation can be endogenously specified and may

serve as a basis for the issues of compensation of losses and surplus sharing.

Consider, for example, a restaurant and a boat company, working independently, both

situated on the shore of the same beautiful lake. The restaurant is operated by agent 1

who can be understood as a group of managers, waiters and kitchen staff. Agent 2, a group

of people as well, manages the boat company. They are considering collaboration and have

two proposals. The first one is simply setting up a joint lunch-sightseeing program that

will benefit both parties. The second proposal is more involved and induces a reshuffling

of the two projects, i.e. the restaurant and the boat company. Since agent 2 has excellent

expertise in both travelling and restaurant management, much more profit will be generated

if the restaurant is also managed by her. Whereas the first proposal only entails a surplus
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sharing problem, the second one is further complicated by the problem of compensating

agent 1 for giving up her user rights of the restaurant project.

This paper analyzes both the loss compensation and surplus sharing problem as illus-

trated by the second proposal in the above example from a cooperative game theoretic

point of view. In our framework, the value of some coalition of players crucially depends

on the involvement of the players in this coalition in a well-defined set of projects. The

involvement is measured by the notion of a player’s shares in projects. That defines a

so-called project-allocation situation (in short, P-A situation) and an associated project-

allocation game (in short, P-A game). The value function of the project-allocation game

is derived from the underlying profit functions for every coalition given a specific share

profile of the projects. So in particular, the value function of this game can be viewed as

a generalization of the neoclassical profit function, with labor and capital as inputs and

with prices given.

Naturally, any specific solution concept for a cooperative TU (transferable utility) game

may of course be applied to solve project-allocation games, and implicitly solve the com-

bined loss compensation and surplus sharing problems. We restrict our attention to two

additive one-point solution concepts: the Shapley value (Shapley (1953)) and the consen-

sus value (cf. Ju, Borm and Ruys (2004)). Arguments for the suitability of these rules in

this specific context are provided.

However, since P-A games are just a partial abstraction of P-A situations, this tradi-

tional approach is incapable of disentangling all necessary details to adequately model the

basic mechanisms concerning the physical reallocation of projects (loss compensation) and

co-working in joint projects (surplus sharing). In fact, the process to realize the maximal

gain of a coalition is a blackbox. Therefore, in order to make the framework operational for

solving practical problems, one further step has to be made. By explicitly incorporating

an underlying cooperative structure in terms of project reallocation and cooperation after

reallocation, we devise different stages in such a way that the loss compensation due to

project reallocation and the sharing of extra surplus from cooperation can be clearly and

logically distinguished. For each of the stages, a game is constructed. Consistently, the

same solution concept is applied to each of the stage games. Thus, following a general stage

approach, also a solution concept for the combined problem is obtained. Finally, an exam-

ple of public-private partnerships is provided, which indicates an interesting application of

the framework into real economic issues.

Although there exists some fundamental work that is helpful for our research, it seems

that the problem of compensation has largely been ignored in economic research. The

analysis of cost sharing situations (cf. Moulin (1987), Tijs and Branzei (2002)) and linear
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production situations (Owen (1975)) is in the same spirit but does not explicitly dis-

criminate between the problems of surplus sharing and loss compensation. An exception

in a somewhat different context is the the work on sequencing games (Curiel et al (1989),

Hamers (1995), Klijn (2000)). In this framework, time slots could be considered as projects.

Agents change the initial order (shares or rights on time slots) into an optimal one so that

the individual payoffs are changed and compensation is needed. Moreover, since joint total

costs decrease as well, also the issue of surplus sharing becomes prominent.

In addition to this section introducing the problem and reviewing the literature briefly,

the remaining part of the paper is structured as follows. In the next section, we present

the main analytical framework by formally introducing project-allocation situations. Sec-

tion 3 addresses the project-allocation games and possible solution concepts. Section 4

distinguishes stages to explicitly solve the problems of compensation and surplus sharing

in project-allocation situations separately. The final section illustrates our analysis with

an economic example.

2 Project-allocation situations

Let us consider a situation in which there is a finite set N of agents/players who can operate

a finite set M of projects.

We use the word “project” in this paper in a very general sense. A project is a spe-

cific entity that can be exploited or operated for some purpose(s) (and mostly for value-

creation). It can be a machine, a research project, a firm, or a public utility, etc. Generally,

a project can either be divisible or indivisible. A project is divisible if it is capable of being

separated into parts and can be partially operated or owned by some party, without loss of

its original function. For instance, a tree farm as a project can be perfectly divided among

players. Indivisibility means that for the purpose of value-creation, a project can only be

completely owned or exploited as a whole. A truck is then an indivisible project because it

will lose the basic function if divided into parts. Since divisibility is a context-dependent

concept which may imply physical divisibility, operational divisibility or ownership divisi-

bility, we have to point out that this paper focuses on the operational divisibility.

Players are characterized by specialities and shares in projects. Specialities of a player

are her competence or productivity in exploiting projects. Different players have different

specialities. With some speciality(-ies), one player may have a relatively favorable position,

or some advantage in working on some project compared with the others. For example, two

researchers co-work on a joint research report that consists of two projects: the theoretical

modelling and the empirical work. Researcher 1 may be good in the first project but not
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acquainted with the latter. Researcher 2 has sound experience in empirical studies but is

not as good as 1 at the theoretical level. Then, 1 and 2 have different specialities in those

two projects. As a result, 1 has advantage in the former while 2 has advantage in the

latter.

A player’s share1 in a project, denoted by ρi,k (i.e. player i’s share in project k), is a

number between 0 and 1 representing the fraction of the project owned by that player. If

a divisible project is fully owned by one player, then her share in that project is 1; if half

of it, the share is then 0.5. In the case of indivisibility, the share in a project can only be 0

or 1. But if two or more players jointly own an indivisible project, what are the individual

shares?

For analytical convenience, we define fictitious divisibility as below: for any indivisible

project k ∈ M , suppose it is controlled by a coalition S, where S ∈ 2N , then player i’s

share in project k is ρi,k = 1/|S|, for all i ∈ S. Thus, if an indivisible project is owned

by a coalition, equal shares in the project can be “fictitiously” distributed among players.

This allows for describing each player’s share in any indivisible project and for solving

the problems of compensation and surplus sharing in such cases mathematically. That is,

despite that an indivisible project can not be divided in itself, the value generated from

it can be equally shared among the players who jointly own it. Furthermore, although in

principle indivisible projects are different from divisible projects, this definition helps to

incorporate indivisible projects into the analytical framework of divisible projects.

Hence, all the players’ shares in the projects at one time form a share profile, denoted

by ρ, which is an N × M matrix2 describing an assignment of projects among players.

Then, we denote the set of share profiles by

R :=

{
ρ ∈ [0, 1]N×M |

n∑
i=1

ρi,k ≤ 1,∀k ∈ M

}
(1)

For any share profile ρ ∈ R, there exists a map fρ : 2N −→ R assigning to any coalition

S ∈ 2N a real number such that fρ(∅) = 0. The function fρ is called the payoff function

under share profile ρ. fρ(S) is called the payoff of coalition S under share profile ρ.

1Here, we do not restrict the implications of shares, or in another sentence, we do not give a definite
economic interpretation but only care about how the shares (in a general sense) in projects that players
have will affect cooperation or even determine compensation and surplus sharing. It may have different
meanings in different contexts. For example, it can represent the ownership/property rights or managerial
rights.

2Given player set N of size n and project set M of size m, ρ is in fact an n×m matrix. We use N ×M
to emphasize that ρ is a matrix associated to player set and project set. The same explanation applies in
cases of other matrices, for instance, when we say that ρS is an S ×M matrix.
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We assume that there is an initial share profile ρ0 ∈ R specifying the initial allocation

scheme of projects to players in this situation.

Based on the above description, formally, a project-allocation situation is denoted by

(N,M, R, ρ0, {fρ}ρ∈R), where N is the set of players, M is the set of projects, R is the set

of share profiles, ρ0 is the initial share profile, and fρ : 2N −→ R is the payoff function

under a share profile ρ ∈ R.

For analytical convenience, we make the following assumptions.

Assumption 1 (continuity):

for any S ∈ 2N , fρ(S) is continuous with respect to parameter ρ.

Assumption 2 (no externality among coalitions):

fρ1
(S) = fρ2

(S) for all S ∈ 2N whenever ρ1
S = ρ2

S.

Here ρS is the S ×M submatrix of ρ.

Assumption 3 (gains from cooperation):

fρ(S ∪ T ) ≥ fρ(S) + fρ(T ) for all ρ ∈ R and for all S, T ∈ 2N with S ∩ T = ∅.

Assumption 4 (ordinary cooperation):

fρ1
(S) ≥ fρ2

(S) ⇒ ∑
i∈S fρ1

({i}) ≥ ∑
i∈S fρ2

({i}) for all ρ1, ρ2 ∈ R and for all S ∈ 2N .

The last assumption means that if a share profile is preferable for a coalition of players

in cooperation, then the corresponding pre-cooperation situation is also preferable in terms

of the sum of their individual payoffs.

The class of all project-allocation situations with player set N and project set M sat-

isfying the above assumptions is denoted by PASN,M .

In a project-allocation situation, players may increase the joint payoff by reshuffling

projects: the (maximal) payoffs of a coalition S depend on the set of feasible reallocation

profiles. We call a profile ρ ∈ R feasible for S with respect to ρ0 if it satisfies the following

two conditions:

(1) ρN\S = ρ0
N\S;

(2)
∑

i∈S ρi,k =
∑

i∈S ρ0
i,k for all k ∈ M .

Given ρ0, the set of feasible profiles for a coalition S is denoted by F(S, ρ0). For

notational simplicity, we use F(S) if there is no confusion about ρ0. Thus, feasibility means

that players can re-arrange their shares in projects subject to the capacity determined

by the initial share profile within the coalition they participate in without affecting the

allocations outside of the coalition.
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3 Project-allocation games and cooperative solution

concepts

In this section, loss compensation and surplus sharing problems will be investigated in a

combined way within a cooperative game framework from a traditional (one-stage) point

of view.

By defining the value of a coalition as the maximal payoff that a coalition can achieve by

means of feasible share profiles, we obtain a standard cooperative game with transferable

utility called a project-allocation game. Formally, for a project-allocation situation P =

(N,M, R, ρ0, {fρ}ρ∈R) ∈ PASN,M , the corresponding project-allocation game (N, v) is

defined by

v(S) := max
ρ∈F(S)

fρ(S) (2)

for all coalitions S ∈ 2N\{∅} and v(∅) = 0. A share profile ρ ∈ F(S) with fρ(S) = v(S) is

called an optimal share profile for coalition S, denoted by ρ∗(S).

Proposition 3.1 Project-allocation games are superadditive.

Proof. Let (N, M, R, ρ0, {fρ}ρ∈R) be a project-allocation situation and let the correspond-

ing P-A game be given by (N, v). We need to show v(S∪T ) ≥ v(S) + v(T ) for all S, T ∈ 2N

with S ∩ T = ∅.
Consider optimal share profiles ρ∗(S ∪ T ), ρ∗(S) and ρ∗(T ) for coalitions S ∪ T , S, T ,

respectively. Since S ∩ T = ∅, we can construct a new share profile ρ̃ ∈ F(S ∪ T ) such

that ρ̃S = ρ∗S(S) and ρ̃T = ρ∗T (T ). Then, by definition and Assumption 2 and 3, we have

v(S ∪ T )

= fρ∗(S∪T )(S ∪ T )

≥ f ρ̃(S ∪ T )

≥ f ρ̃(S) + f ρ̃(T )

= fρ∗(S)(S) + fρ∗(T )(T )

= v(S) + v(T )

We want to note that project-allocation games are not necessarily convex games. Such

an example is easy to get.

We will consider two related solution concepts: the Shapley value Φ and the consensus

value γ.
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Recall that

Φ(v) =
1

|N |!
∑

σ∈Π(N)

mσ(v)

for all v ∈ TUN . Here Π(N) denotes the set of all bijections σ : {1, 2, ..., |N |} −→ N of N

and the marginal vector mσ(v) ∈ RN , for σ ∈ Π(N), is defined by

mσ
σ(k) := v({σ(1), ..., σ(k)})− v({σ(1), ..., σ(k − 1)})

for all k ∈ {1, ..., |N |}.
When we go over the definition and the properties of the Shapley value, we can find

that it may not be entirely adequate to analyze the project-allocation situations mainly by

the following two reasons.

Firstly, the Shapley value relies on the basic notion of marginal vectors. Here, given

some ordering of players entering a game, the payoffs are determined by the marginal

contributions, which is not satisfying in a constructive or bargaining type of physical setting

since a later entrant gets the whole surplus. In a superadditive game, the incumbents will

not accept such an arrangement as their contributions are not reflected. While if a game

is subadditive, the entrant will not accept such a contract. Apparently, in the practice

of a project-allocation situation, a marginal vector is even harder to implement as it may

involve reshuffling of projects by current incumbents.

Secondly, the dummy property does not seem too imperative in P-A situations. The

informational requirements in a P-A situation are rather hard: it is difficult to recognize

dummies from the basic description of the situation.

We propose an alternative solution concept for TU games: the consensus value. This

rule follows from a natural and simple idea to share coalition values. For more information

including an axiomatic characterization of this solution concept, we refer to Ju, Borm and

Ruys (2004).

Consider the following 3-player example. We first have two players: 1 and 2. They

cooperate with each other and form a coalition {1, 2}. The coalition value v({1, 2}) is

generated. Suppose now player 3 enters the scene, who would like to cooperate with

player 1 and 2. But because the coalition {1, 2} had been already formed before she

entered the game, player 3 will actually cooperate with the existing coalition {1, 2} in-

stead of simply cooperating with 1 and 2 individually (Consensus is needed here). If

{1, 2} agrees as well, the coalition value v({1,2,3}) will be generated. How to share

it between {3} and {1, 2}? Generally, no rule is better than splitting the joint surplus

v({1, 2, 3}) − v({1, 2}) − v({3}) equally and assigning half to each of the two parties in

addition to their own values (Consensus is obtained once again). Then, what remains (the
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so-called remainder) for {1, 2} is 1
2
(v({1, 2, 3}) + v({1, 2})− v({3})). Apparently, 1 and

2 will share this remainder in a similar way: besides their individual values, each of them

gets 1
2

(
1
2
(v({1, 2, 3}) + v({1, 2})− v({3}))− v({1})− v({2})). Extending this argument3

to an n-player case, we then have a general method, which can be understood as a stan-

dardized remainder rule as we take the 2-player game standard solution as a base and apply

it to solving games by taking the existing coalition as one player. Furthermore, since no

order is pre-determined for a TU game, we take all possible ordering of players into account

and average the corresponding outcomes, which serves as the final payoff for players.

Formally, this rule is defined as follows. For a given σ ∈ Π(N) and i ∈ {1, 2, ..., n} we

define Sσ
i = {σ(1), σ(2), ..., σ(i)} and Sσ

0 = ∅. We then define the recurrence relation

r(Sσ
i ) =

{
1
2

(
r(Sσ

i+1) + v(Sσ
i )− v({σ(i + 1)})) if i ∈ {1, 2, ..., n− 1}

v(N) if i = n

where r(Sσ
i ) is the standardized remainder for coalition Si in a given order σ ∈ Π(N): the

value left for Sσ
i after allocating surplus to later entrants Sσ

−i.

We construct the individual standardized remainder vector sσ(v), which corresponds to

the situation where the players enter the game one by one in the order σ(1), σ(2), ..., σ(n)

and assign each player, besides her individual payoff v({i}), half of the net surplus from

the standardized remainder she4 creates by joining the group of players already present.

Formally, it is the vector in RN defined by

sσ
σ(i) =

{
1
2

(
r(Sσ

i )− v(Sσ
i−1) + v({σ(i)})) if i ∈ {2, ..., n}

r(Sσ
1 ) if i = 1

The consensus value is equal to the average of the individual standardized remainder

vectors, i.e.

γ(v) =
1

|N |!
∑

σ∈Π(N)

sσ(v).

A more descriptive name for the consensus value could be the average serial standardized

remainder value. In the same spirit, an alternative name for the Shapley value could be

the average serial marginal contribution value.

3Indeed, this argument is based on a backward process. Alternatively, we can construct a forward
process to model the idea, which yields the same result. The consistency is provided in Ju, Borm and
Ruys (2004).

4Exactly speaking, the value of the corresponding standardized remainder is created by her (the new
entrant) and the existing coalition.
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By Ju, Borm and Ruys (2004), surprisingly, the consensus value is in fact a linear

combination of the Shapley value and the equal surplus solution:

γi(v) =
1

2
Φi(v) +

1

2

(
v(N)−∑

j∈N v({j})
n

+ v({i})
)

for all i ∈ N , where Φi(v) is the Shapley value of the game.

Example 3.2 Consider a P-A situation P = (N, M, R, ρ0, {fρ}ρ∈R) ∈ PASN,M where

N := {1, 2, 3}, M := {A,B}, and

ρ0 =




0 0

1 1

0 0


 .

Furthermore,

fρ({1}) = 10ρ1,A + 1ρ1,B + ρ1,Aρ1,B

fρ({2}) = 8ρ2,A + 3ρ2,B + ρ2,Aρ2,B

fρ({3}) = 6ρ3,A + 5ρ3,B + ρ3,Aρ3,B

fρ({1, 2}) =
∑

i∈{1,2}
fρ({i}) + 3


 ∑

i∈{1,2}

∑

k∈M

ρi,k




fρ({1, 3}) =
∑

i∈{1,3}
fρ({i}) + 4


 ∑

i∈{1,3}

∑

k∈M

ρi,k




fρ({2, 3}) =
∑

i∈{2,3}
fρ({i}) + 2


 ∑

i∈{2,3}

∑

k∈M

ρi,k




fρ({1, 2, 3}) =
∑

i∈{1,2,3}
fρ({i}) + 6


 ∑

i∈{1,2,3}

∑

k∈M

ρi,k




It is easy to see that these payoff functions satisfy Assumption 1-4. The corresponding

P-A game is given by

S {1} {2} {3} {12} {13} {23} {123}
v(S) 0 12 0 19 0 17 27

with γ(v) =
(
43

4
, 18, 41

4

)
and Φ(v) =

(
41

2
, 19, 31

2

)
.
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In our opinion, the consensus value well fits the admission structure of the P-A situa-

tions. Consider an existing coalition S and a new entrant i. Ex ante, S is a well formed

coalition: they had reallocated projects with each other and now cooperate well; they

also share the joint surplus in some way. Now, player i would join this coalition. What

happens? Obviously, i could not work with any sub-coalition of S but only with S as a

whole since S has already been formed over there, comparable to the case that two players

cooperate. The immediate (standard) solution would then be to share the extra revenues

from the cooperation equally between S and i.

However, the approach to model the whole P-A situation as one cooperative game is

not completely satisfying: P-A games do not take all practical features of P-A situations

into account. The underlying process of realizing and allocating the maximal gain of the

grand coalition fρ∗(N)(N) starting from the individual payoffs is still a blackbox.

4 A stage approach to compensation and surplus shar-

ing problems in project-allocation situations

We now focus on an underlying process of obtaining and redistributing the maximal payoff

of the grand coalition fρ∗(N)(N) in a project-allocation situation P = (N,M, R, ρ0, {fρ}ρ∈R).

• Stage 1: The initial state, ρ0, is a static and natural state, in which no interactive

behavior happens and players keep their shares as given. This state yields an initial

value distribution

π0 :=
(
fρ0

({i})
)

i∈N

• Stage 2: This stage consists of project reallocation towards the optimal share profile

ρ∗(N) for the grand coalition N . Since in the new profile ρ∗(N), any player i ∈ N

has a new assignment of projects, ρ∗i (N), it immediately yields a new “direct” payoff:

fρ∗(N)({i}), which corresponds to the direct reallocation value distribution:

π∗ :=
(
fρ∗(N)({i}))

i∈N

Taking coalitional behavior into account, we construct a reallocating game (N, w)

by defining w(S) =
∑

i∈S fρ∗(S)({i}), where ρ∗(S) = arg maxρ∈F(S,ρ0) fρ(S). So, in

particular, w(N) =
∑

i∈N π∗i .

Proposition 4.1 Reallocating games are superadditive.
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Proof. Let P = (N, M, R, ρ0, {fρ}ρ∈R) be a project-allocation situation and let the corre-

sponding reallocating game be given by (N,w). We need to show w(S∪T ) ≥ w(S) + w(T )

for all S, T ∈ 2N with S ∩ T = ∅.
Let ρ∗(S ∪T ), ρ∗(S) and ρ∗(T ) be the optimal share profiles for coalitions S ∪ T , S, T ,

respectively. Let ρ̃ ∈ F(S ∪ T ) be such that ρ̃S = ρ∗S(S) and ρ̃T = ρ∗T (T ). Then, we have

w(S ∪ T )

=
∑

i∈S∪T

fρ∗(S∪T )({i})

≥
∑

i∈S∪T

f ρ̃({i})

=
∑
i∈S

f ρ̃({i}) +
∑
i∈T

f ρ̃({i})

=
∑
i∈S

fρ∗(S)({i}) +
∑
i∈T

fρ∗(T )({i})

= w(S) + w(T )

Here, the inequality follows from the fact fρ∗(S∪T )(S∪T ) ≥ f ρ̃(S ∪ T ) and Assumption 4.

In general, π∗ 6= π0; and apparently, the players incurred losses due to project real-

location need to be compensated. For this we will consider solutions of the associated

compensation game (N, w̄) by defining w̄(S) = w(S)−∑
i∈S π∗i . Note that w̄(N) = 0.

• Stage 3: This stage considers cooperation after the reallocation in the second stage,

i.e. co-working on projects based on the optimal share profile ρ∗(N). This type of

cooperation yields a co-working game (N,ω) defined as the project-allocation game

corresponding to a project-allocation situation (N,M, R, ρ∗(N), {fρ}ρ∈R).

Proposition 4.2 Co-working games are superadditive.

Proof. Apparently, co-working games are superadditive as they are project-allocation

games.

Indeed, this game still takes project reallocation into consideration so that players are

allowed to reallocate shares before joint production. However, the initial share profile itself

in this situation is the optimal share profile and ω(N) = v(N) = fρ∗(N)(N), players do

not reallocate projects in the grand coalition any more (although it may happen in theory

within sub-coalitions) but directly work with each other with their current shares. So no

compensation is needed. What entails is only surplus sharing. For this aspect, we consider

11



solutions of the associated surplus sharing game (N, ω̄) given by ω̄(S) = ω(S)−∑
i∈S π∗i .

It is obvious that
∑

i∈N π∗i + w̄(N) + ω̄(N) = v(N).

The above description on the three stages in a project-allocation situation implies a

natural and reasonable way to share the maximal payoff fρ∗(N)(N). Firstly, a player i has

her direct reallocation value due to optimal project reallocation. In addition, to determine

the compensations, one solves the compensation game w̄; and to solve the surplus sharing

problem, one solves the surplus sharing game ω̄. A player’s final payoff is the sum of these

three parts.

Solving both games with the same one-point solution concept yields a (stage-based)

consistent one-point solution concept for P-A situations:

ψ∗i (P) := π∗i + ψi(w̄) + ψi(ω̄)

where ψ : TUN −→ RN is a one-point solution concept for TU games.

Generally, it will be the case that the immediate application of ψ to the P-A game

will yield a different solution, i.e., ψ∗i (P) 6= ψi(v). Then, it is natural to ask under what

condition both approaches might give the same result. We require two weak conditions

on ψ, i.e., ψ(0) = 0 and translation invariance ψ(v + b) = ψ(v) + b for all v ∈ TUN and

b ∈ RN (b is an additive game), and strengthen Assumption 3 in the following way.

Assumption 3’ f is additive with respect to coalitions, i.e. fρ(S ∪ T ) = fρ(S) + fρ(T )

for all ρ ∈ R and for all S, T ∈ 2N with S ∩ T = ∅.

Now, formally, we have

Proposition 4.3 With Assumption 3’, if ψ satisfies translation invariance and ψ(0) = 0,

then ψ∗i (P) = ψi(v), where ψ, P and v are defined as above.

Proof. Clearly, assumption 3’ implies that fρ∗(N)(N) =
∑

i∈N fρ∗(N)({i}). Consequently,

w(S) = v(S) for all S ∈ 2N and ω̄(S) = 0 for all S ∈ 2N . What remains is obvious:

ψ∗(P) = ψ(v).

In particular, Φ∗(P) of a project-allocation situation P ∈ PASN,M is given by

Φ∗
i (P) = π∗i + Φi(w̄) + Φi(ω̄) for all i ∈ N

Similarly, γ∗(P) of a project-allocation situation P ∈ PASN,M is given by

γ∗i (P) = π∗i + γi(w̄) + γi(ω̄) for all i ∈ N

12



5 An example: disintegration in the water sector

Let us look at an example considering the reform of disintegration and reallocation in the

water sector. In this setting, we have three players N := {1, 2, 3}: player 1 is a provincial

government, 2 is a local government, and 3 is a company; two projects: water business

(A) and related business (B) such as a golf club or recreation park built on the water

source land. So, M := {A,B}. Initially, both projects are owned by the local government.

Consequently, the initial share profile is

ρ0 =




0 0

1 1

0 0


 .

Unlike the for-profit project B, water business is usually seen as a public utility. So, the

payoff of running the water project can be interpreted as the social welfare/value instead

of individual profit. Moreover, we assume that the company has speciality in operating a

commercial business while the provincial government may create higher social value if she

controls the water project. However, they do have some relative weaknesses. For example,

the private company is not good at running public utilities. This type of situation is

modelled by the corresponding payoff functions, which are provided in Example 3.2.

Without cooperation, players’ individual payoffs come from two parts: the stand-alone

payoffs generated from project A or B and the payoff due to the cross-subsidy effect between

two projects. With cooperation, in addition to players’ individual payoffs, there are some

extra gains from cooperation, which, for instance, is expressed by 2
(∑

i∈{2,3}
∑

k∈M ρi,k

)

in the payoff function of coalition {2, 3}.
The optimal reform plans for the various coalitions will be: ρ∗({1}) = ρ0;

ρ∗({1, 2}) =




1 0

0 1

0 0


 ; ρ∗({1, 3}) =




0 0

1 1

0 0


 ; ρ∗({2, 3}) =




0 0

1 0

0 1




and for grand coalition {1, 2, 3},

ρ∗({1, 2, 3}) =




1 0

0 0

0 1


 .

One readily checks that π0 := (0, 12, 0), and π∗ = (10, 0, 5).

Moreover, beside the project-allocation game (N, v) for the whole situation in this

example, we have a compensation game and a surplus sharing game:
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S {1} {2} {3} {12} {13} {23} {123}
v(S) 0 12 0 19 0 17 27

w̄(S) −10 12 −5 3 −15 8 0

ω̄(S) 0 0 0 3 8 2 12

The solutions based on the Shapley value or the consensus value can be found in the

following two tables.

Φ(v)
(
41

2
, 19, 31

2

)

π∗ (10, 0, 5)

Φ(w̄)
(−91

6
, 131

3
,−41

6

)

Φ(ω̄)
(
51

6
, 21

6
, 42

3

)

Φ∗(P)
(
6, 151

2
, 51

2

)

γ(v)
(
43

4
, 18, 41

4

)

π∗ (10, 0, 5)

γ(w̄)
(−9 1

12
, 131

6
,−4 1

12

)

γ(ω̄)
(
4 7

12
, 3 1

12
, 41

3

)

γ∗(P)
(
51

2
, 161

4
, 51

4

)

Hence, according to the consensus value, the local government is compensated by the

provincial government and the company with a total amount 131
6

due to project realloca-

tion, and obtains 3 1
12

from the joint surplus generated by joint production based on the

new share profile.
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